Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397748

RESUMO

The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss). It has been suggested that glutamate excitotoxicity may be an inciting element in the degenerative cascade observed in these pathological cochlear conditions. Moreover, oxidative damage induced by free hydroxyl radicals and nitric oxide may dramatically enhance cochlear damage induced by glutamate excitotoxicity. To investigate the underlying molecular mechanisms involved in cochlear excitotoxicity, we examined the molecular basis responsible for kainic acid (KA, a full agonist of AMPA/KA-preferring glutamate receptors)-induced IHC synapse loss and degeneration of the terminals of the type I spiral ganglion afferent neurons using a cochlear explant culture from P3 mouse pups. Our results demonstrated that disruption of the synaptic connection between IHCs and SGNs induced increased levels of oxidative stress, as well as altered both mitochondrial function and neurotrophin signaling pathways. Additionally, the application of exogenous antioxidants and neurotrophins (NT3, BDNF, and small molecule TrkB agonists) clearly increases synaptogenesis. These results suggest that understanding the molecular pathways involved in cochlear excitotoxicity is of crucial importance for the future clinical trials of drug interventions for auditory synaptopathies.

2.
Cell Mol Life Sci ; 81(1): 80, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334784

RESUMO

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown. To gain insights into the process leading to hearing impairment, we have analyzed the Opa1delTTAG mouse model that recapitulates the DOAplus syndrome through complementary approaches combining morpho-physiology, biochemistry, and cellular and molecular biology. We found that Opa1delTTAG mutation leads an adult-onset progressive auditory neuropathy in mice, as attested by the auditory brainstem response threshold shift over time. However, the mutant mice harbored larger otoacoustic emissions in comparison to wild-type littermates, whereas the endocochlear potential, which is a proxy for the functional state of the stria vascularis, was comparable between both genotypes. Ultrastructural examination of the mutant mice revealed a selective loss of sensory inner hair cells, together with a progressive degeneration of the axons and myelin sheaths of the afferent terminals of the spiral ganglion neurons, supporting an auditory neuropathy spectrum disorder (ANSD). Molecular assessment of cochlea demonstrated a reduction of Opa1 mRNA level by greater than 40%, supporting haploinsufficiency as the disease mechanism. In addition, we evidenced an early increase in Sirtuin 3 level and in Beclin1 activity, and subsequently an age-related mtDNA depletion, increased oxidative stress, mitophagy as well as an impaired autophagic flux. Together, these results support a novel role for OPA1 in the maintenance of inner hair cells and auditory neural structures, addressing new challenges for the exploration and treatment of OPA1-linked ANSD in patients.


Assuntos
Surdez , Perda Auditiva Central , Atrofia Óptica Autossômica Dominante , Animais , Humanos , Camundongos , GTP Fosfo-Hidrolases/genética , Perda Auditiva Central/genética , Mutação , Atrofia Óptica Autossômica Dominante/genética
3.
FASEB J ; 38(2): e23411, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243766

RESUMO

Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Audição , Fenótipo
4.
PLoS Genet ; 19(9): e1010933, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738262

RESUMO

Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.


Assuntos
Células Ciliadas Auditivas Externas , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Perda Auditiva Neurossensorial/genética , Audição , Neurônios Motores , Sobrevivência Celular
5.
Cell Death Dis ; 14(6): 387, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386014

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase ß1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase ß1 subunit.


Assuntos
Surdez , Síndrome de Wolfram , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Membrana Celular , Epitélio , Síndrome de Wolfram/genética
6.
Sci Signal ; 15(738): eabj4583, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700264

RESUMO

Resistance to thyroid hormone due to mutations in THRA, which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRß1 and TRß2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations (ThraS1/+ mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, ThraS1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.


Assuntos
Surdez , Perda Auditiva , Receptores alfa dos Hormônios Tireóideos , Animais , Perda Auditiva/genética , Camundongos , Mutação , Receptores alfa dos Hormônios Tireóideos/genética , Hormônios Tireóideos
7.
J Neurosci ; 42(11): 2253-2267, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35078924

RESUMO

Sound-level coding in the auditory nerve is achieved through the progressive recruitment of auditory nerve fibers (ANFs) that differ in threshold of activation and in the stimulus level at which the spike rate saturates. To investigate the functional state of the ANFs, the electrophysiological tests routinely used in clinics only capture the first action potentials firing in synchrony at the onset of the acoustic stimulation. Assessment of other properties (e.g., spontaneous rate and adaptation time constants) requires single-fiber recordings directly from the nerve, which for ethical reasons is not allowed in humans. By combining neuronal activity measurements at the round window and signal-processing algorithms, we constructed a peristimulus time response (PSTR), with a waveform similar to the peristimulus time histograms (PSTHs) derived from single-fiber recordings in young adult female gerbils. Simultaneous recordings of round-window PSTR and single-fiber PSTH provided models to predict the adaptation kinetics and spontaneous rate of the ANFs tuned at the PSTR probe frequency. The predictive model derived from gerbils was then validated in female mice and finally applied to humans by recording PSTRs from the auditory nerve in normal-hearing patients who underwent cerebellopontine angle surgeries. A rapid adaptation time constant of ∼3 ms and a mean spontaneous rate of ∼22 spikes/s in the 4 kHz frequency range were found. This study offers a promising diagnostic tool to map the human auditory nerve, thus opening new avenues to better understanding auditory neuropathies, tinnitus, and hyperacusis.SIGNIFICANCE STATEMENT Neural adaptation in auditory nerve fibers corresponds to the reduction in the neuronal activity to prolonged or repeated sound stimulation. For obvious ethical reasons, single-fiber recordings from the auditory nerve are not feasible in humans, creating a critical gap in extending data obtained using animal models to humans. Using electrocochleography in rodents, we inferred adaptation kinetics and spontaneous discharge rates of the auditory nerve fibers in humans. Routinely used in basic and clinical laboratories, this tool will provide a better understanding of auditory disorders such as neuropathies, tinnitus, and hyperacusis, and will help to improve hearing-aid fittings.


Assuntos
Nervo Coclear , Audição , Estimulação Acústica , Animais , Nervo Coclear/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Gerbillinae , Audição/fisiologia , Humanos , Camundongos , Fibras Nervosas/fisiologia
8.
Anat Rec (Hoboken) ; 305(3): 622-642, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34096183

RESUMO

The apex or apical region of the cochlear spiral within the inner ear encodes for low-frequency sounds. The disposition of sensory hair cells on the organ of Corti is largely variable in the apical region of mammals, and it does not necessarily follow the typical three-row pattern of outer hair cells (OHCs). As most underwater noise sources contain low-frequency components, we expect to find most lesions in the apical region of the cochlea of toothed whales, in cases of permanent noise-induced hearing loss. To further understand how man-made noise might affect cetacean hearing, there is a need to describe normal morphological features of the apex and document interspecific anatomic variations in cetaceans. However, distinguishing between apical normal variability and hair cell death is challenging. We describe anatomical features of the organ of Corti of the apex in 23 ears from five species of toothed whales (harbor porpoise Phocoena phocoena, spinner dolphin Stenella longirostris, pantropical spotted dolphin Stenella attenuata, pygmy sperm whale Kogia breviceps, and beluga whale Delphinapterus leucas) by scanning electron microscopy and immunofluorescence. Our results showed an initial region where the lowest frequencies are encoded with two or three rows of OHCs, followed by the typical configuration of three OHC rows and three rows of supporting Deiters' cells. Whenever two rows of OHCs were detected, there were usually only two corresponding rows of supporting Deiters' cells, suggesting that the number of rows of Deiters' cells is a good indicator to distinguish between normal and pathological features.


Assuntos
Cóclea , Perda Auditiva Provocada por Ruído , Animais , Biomarcadores/metabolismo , Cóclea/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/metabolismo , Humanos , Órgão Espiral/patologia , Baleias
9.
Cereb Cortex ; 32(8): 1737-1754, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34494109

RESUMO

People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Percepção Auditiva , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Humanos , Ratos
10.
Antioxidants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34942983

RESUMO

Recent studies demonstrated that reversible continuous noise exposure may induce a temporary threshold shift (TTS) with a permanent degeneration of auditory nerve fibers, although hair cells remain intact. To probe the impact of TTS-inducing impulse noise exposure on hearing, CBA/J Mice were exposed to noise impulses with peak pressures of 145 dB SPL. We found that 30 min after exposure, the noise caused a mean elevation of ABR thresholds of ~30 dB and a reduction in DPOAE amplitude. Four weeks later, ABR thresholds and DPOAE amplitude were back to normal in the higher frequency region (8-32 kHz). At lower frequencies, a small degree of PTS remained. Morphological evaluations revealed a disturbance of the stereociliary bundle of outer hair cells, mainly located in the apical regions. On the other hand, the reduced suprathreshold ABR amplitudes remained until 4 weeks later. A loss of synapse numbers was observed 24 h after exposure, with full recovery two weeks later. Transmission electron microscopy revealed morphological changes at the ribbon synapses by two weeks post exposure. In addition, increased levels of oxidative stress were observed immediately after exposure, and maintained for a further 2 weeks. These results clarify the pathology underlying impulse noise-induced sensory dysfunction, and suggest possible links between impulse-noise injury, cochlear cell morphology, metabolic changes, and hidden hearing loss.

11.
Front Public Health ; 9: 725080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722438

RESUMO

In France 58% of persons with hearing loss still do not wear hearing aids. Pure-tone audiometry is the traditional gold standard in assessment and screening of hearing impairment, but it requires the use of calibrated devices and soundproof booth. The antiphasic digits-in-noise (DIN) test does not require calibrated material and can run on a standard headset or earbuds connected to a smartphone or a computer. The DIN test is highly correlated with pure tone audiometry and has already shown to be effective in hearing loss screening in its English version promoted by the WHO. The aim of the present study was to develop and validate a French version of the antiphasic DIN test for implementation on a national screening test offered as a smartphone app. The audio files recorded from a French native female speaker were selected and normalized in intensity according to their recognition probability. The French DIN test application was then tested on normal hearing- and hearing-impaired subjects. Based on the strong correlation between pure tone audiometry (PTA) and DIN SRT, we calculated ROC curves and Z-score. For PTA > 20 dB HL, a SNR cutoff of 12.9 dB corresponds to a sensitivity and specificity of 0.96 and 0.93, respectively. To detect moderate and more severe hearing loss (PTA > 40 dB HL), the SNR cutoff was -10.9 dB, corresponding to a sensitivity and specificity of 0.99 and 0.83, respectively. The Z-score was calculated to define statistical criteria of normality for speech-in-noise evaluation. While a score of 0 roughly corresponds to the normality (DIN SRT = -15.4 dB SNR), a subject with DIN SRT > -12.2 (Z-score > 2) is ranked in the hearing loss population. Next, the French antiphasic DIN test was implemented in the Höra iOS and Android apps. In total, 19,545 Höra tests were completed and analyzed. Three quarters of them were classified as normal (74 %) and one quarter presented mild (9%) or more severe loss (17%). Together, results argue for the use of the French version of antiphasic DIN test in the general population to improve the screening of hearing-impaired individuals.


Assuntos
Ruído , Smartphone , Audiometria de Tons Puros , Feminino , Audição , Humanos , Idioma
12.
J Physiol ; 599(24): 5397-5416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34783032

RESUMO

DFNA25 is an autosomal-dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super-resolution microscopy, we observed oversized synaptic ribbons and patch-clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano-transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. KEY POINTS: The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3-p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3-p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.


Assuntos
Estereocílios , Sinapses , Animais , Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Camundongos
13.
Front Cell Neurosci ; 15: 699978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385909

RESUMO

Previous work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category. The noise exposure targeted a cochlear region with distributed innervation (low-, medium- and high-SR neurons). It produced moderate elevations in outer hair cell-based distortion-product otoacoustic emission and whole nerve compound action potential thresholds in this region, with accompanying reductions in suprathreshold response amplitudes, quantified at 24 h. These parameters of response recovered well with post-exposure time. Chronic synapse loss was maximum in the frequency region initially targeted by the noise. Cochlear round window recorded mass potentials (spontaneous neural noise and sound-driven peri-stimulus time responses, PSTR) reflected parameters of the loss not detected by the conventional assays. Spontaneous activity was acutely reduced. Steady-state (PSTR plateau) activity was correlated with synapse loss in frequency regions with high concentrations of low-SR neurons, whereas the PSTR onset peak and spontaneous round window noise, both dominated by high-SR fiber activity, were relatively unaltered across frequency in chronic ears. Together, results suggest that acute targets of noise were of mixed SR subtypes, but chronic targets were predominantly low-SR neurons. PSTRs captured key properties of the auditory nerve response and vulnerability to injury that should yield important diagnostic information in hearing loss etiologies producing cochlear synaptic and neural loss.

14.
Front Cell Neurosci ; 15: 658990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828461

RESUMO

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor. To explore the potential protective effect of endogenous PACAP against Noise-induced hearing loss (NIHL), we used a knockout mouse model lacking PAC1 receptor expression (PACR1-/-) and a transgenic humanized mouse model expressing the human PAC1 receptor (TgHPAC1R). Based on complementary approaches combining electrophysiological, histochemical, and molecular biological evaluations, we show PAC1R expression in spiral ganglion neurons and in cochlear apical cells of the organ of Corti. Wild-type (WT), PAC1R-/-, and TgHPAC1R mice exhibit similar auditory thresholds. For most of the frequencies tested after acute noise damage, however, PAC1R-/- mice showed a larger elevation of the auditory threshold than did their WT counterparts. By contrast, in a transgene copy number-dependent fashion, TgHPAC1R mice showed smaller noise-induced elevations of auditory thresholds compared to their WT counterparts. Together, these findings suggest that PACAP could be a candidate for endogenous protection against noise-induced hearing loss.

15.
BMC Biol ; 19(1): 18, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526032

RESUMO

BACKGROUND: Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g., noise, ototoxic drugs) factors and their interaction may influence the onset and severity of ARHL. Considering the potential links between thyroid hormone, mitochondrial activity, and hearing, here, we probed the role of p43, a N-terminally truncated and ligand-binding form of the nuclear receptor TRα1, in hearing function and in the maintenance of hearing during aging in p43-/- mice through complementary approaches, including in vivo electrophysiological recording, ultrastructural assessments, biochemistry, and molecular biology. RESULTS: We found that the p43-/- mice exhibit no obvious hearing loss in juvenile stages, but that these mice developed a premature, and more severe, ARHL resulting from the loss of cochlear sensory outer and inner hair cells and degeneration of spiral ganglion neurons. Exacerbated ARHL in p43-/- mice was associated with the early occurrence of a drastic fall of SIRT1 expression, together with an imbalance between pro-apoptotic Bax, p53 expression, and anti-apoptotic Bcl2 expression, as well as an increase in mitochondrial dysfunction, oxidative stress, and inflammatory process. Finally, p43-/- mice were also more vulnerable to noise-induced hearing loss. CONCLUSIONS: These results demonstrate for the first time a requirement for p43 in the maintenance of hearing during aging and highlight the need to probe the potential link between human THRA gene polymorphisms and/or mutations and accelerated age-related deafness or some adult-onset syndromic deafness.


Assuntos
Envelhecimento , Presbiacusia/genética , Receptores dos Hormônios Tireóideos/genética , Animais , Masculino , Camundongos , Presbiacusia/fisiopatologia , Receptores dos Hormônios Tireóideos/metabolismo
16.
Front Cell Neurosci ; 15: 733004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975405

RESUMO

NMDA receptors (NMDARs) populate the complex between inner hair cell (IHC) and spiral ganglion neurons (SGNs) in the developing and mature cochlea. However, in the mature cochlea, activation of NMDARs is thought to mainly occur under pathological conditions such as excitotoxicity. Ototoxic drugs such as aspirin enable cochlear arachidonic-acid-sensitive NMDAR responses, and induced chronic tinnitus was blocked by local application of NMDAR antagonists into the cochlear fluids. We largely ignore if other modulators are also engaged. In the brain, D-serine is the primary physiological co-agonist of synaptic NMDARs. Whether D-serine plays a role in the cochlea had remained unexplored. We now reveal the presence of D-serine and its metabolic enzymes prior to, and at hearing onset, in the sensory and non-neuronal cells of the cochlea of several vertebrate species. In vivo intracochlear perfusion of D-serine in guinea pigs reduces sound-evoked activity of auditory nerve fibers without affecting the receptor potentials, suggesting that D-serine acts specifically on the postsynaptic auditory neurons without altering the functional state of IHC or of the stria vascularis. Indeed, we demonstrate in vitro that agonist-induced activation of NMDARs produces robust calcium responses in rat SGN somata only in the presence of D-serine, but not of glycine. Surprisingly, genetic deletion in mice of serine racemase (SR), the enzyme that catalyzes D-serine, does not affect hearing function, but offers protection against noise-induced permanent hearing loss as measured 3 months after exposure. However, the mechanisms of activation of NMDA receptors in newborn rats may be different from those in adult guinea pigs. Taken together, these results demonstrate for the first time that the neuro-messenger D-serine has a pivotal role in the cochlea by promoting the activation of silent cochlear NMDAR in pathological situations. Thus, D-serine and its signaling pathway may represent a new druggable target for treating sensorineural hearing disorders (i.e., hearing loss, tinnitus).

17.
Front Cell Dev Biol ; 9: 783504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087833

RESUMO

Viral-mediated gene augmentation, silencing, or editing offers tremendous promise for the treatment of inherited and acquired deafness. Inner-ear gene therapies often require a safe, clinically useable and effective route of administration to target both ears, while avoiding damage to the delicate structures of the inner ear. Here, we examined the possibility of using a cisterna magna injection as a new cochlear local route for initiating binaural transduction by different serotypes of the adeno-associated virus (AAV2/8, AAV2/9, AAV2/Anc80L65). The results were compared with those following canalostomy injection, one of the existing standard inner ear local delivery routes. Our results demonstrated that a single injection of AAVs enables high-efficiency binaural transduction of almost all inner hair cells with a basal-apical pattern and of large numbers of spiral ganglion neurons of the basal portion of the cochlea, without affecting auditory function and cochlear structures. Taken together, these results reveal the potential for using a cisterna magna injection as a local route for binaural gene therapy applications, but extensive testing will be required before translation beyond mouse models.

18.
J Telemed Telecare ; 27(7): 409-423, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31694484

RESUMO

INTRODUCTION: Current literature does not provide strong evidence that remote programming of hearing aids is effective, despite its increasing use by audiologists. We tested speech perception outcomes, real-ear insertion gain, and changes in self-perceived hearing impairment after face-to-face and remote programming of hearing aids in a randomized multicentre, single-blind crossover study. METHODS: Adult experienced hearing aid users were enrolled during routine follow-up visits to audiology clinics. Hearing aids were programmed both face to face and remotely, then participants randomly received either the face-to-face or remote settings in a blinded manner and were evaluated 5 weeks later. Participants then received the other settings and were evaluated 5 weeks later. RESULTS: Data from 52 out of 60 participants were analysed. We found excellent concordance in performance of hearing aids programmed face to face and remotely for speech understanding in quiet (phonetically balanced kindergarten test - intraclass correlation coefficient of 0.92 (95% confidence interval: 0.87-0.95)), and good concordance in performance for speech understanding in noise (phonetically balanced kindergarten +5 dB signal-to-noise ratio - intraclass correlation coefficient of 0.71 (95% confidence interval: 0.55-0.82)). Face-to-face and remote programming took 10 minutes (±2.9) and 10 minutes (±2.8), respectively. Real-ear insertion gains were highly correlated for input sound at 50, 65 and 80 dB sound pressure levels. The programming type did not affect the abbreviated profile of hearing aid questionnaire scores. CONCLUSIONS: In experienced hearing aid users, face-to-face and remote programming of hearing aids give similar results in terms of speech perception, with no increase in the time spent on patients' care and no difference in self-reported hearing benefit. CLINICALTRIALS.GOV IDENTIFIER: NCT02589561.


Assuntos
Auxiliares de Audição , Perda Auditiva , Percepção da Fala , Adulto , Estudos Cross-Over , Humanos , Método Simples-Cego
19.
Front Vet Sci ; 7: 429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851016

RESUMO

Prestin is an integral membrane motor protein located in outer hair cells of the mammalian cochlea. It is responsible for electromotility and required for cochlear amplification. Although prestin works in a cycle-by-cycle mode up to frequencies of at least 79 kHz, it is not known whether or not prestin is required for the extreme high frequencies used by echolocating species. Cetaceans are known to possess a prestin coding gene. However, the expression and distribution pattern of the protein in the cetacean cochlea has not been determined, and the contribution of prestin to echolocation has not yet been resolved. Here we report the expression of the protein prestin in five species of echolocating whales and two species of echolocating bats. Positive labeling in the basolateral membrane of outer hair cells, using three anti-prestin antibodies, was found all along the cochlear spiral in echolocating species. These findings provide morphological evidence that prestin can have a role in cochlear amplification in the basolateral membrane up to 120-180 kHz. In addition, labeling of the cochlea with a combination of anti-prestin, anti-neurofilament, anti-myosin VI and/or phalloidin and DAPI will be useful for detecting potential recent cases of noise-induced hearing loss in stranded cetaceans. This study improves our understanding of the mechanisms involved in sound transduction in echolocating mammals, as well as describing an optimized methodology for detecting cases of hearing loss in stranded marine mammals.

20.
J Clin Med ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098144

RESUMO

Over the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...